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Figure 1: Closeup on superimposed point clouds, in blue color the stuctured light scan, in red the MVS approach by Furukawa
and Ponce [9] and in yellow the result of the combined robust implicit moving least squares [13] (RIMLS) processing. While
the structured light results exhibits less outliers than the MVS approach, it still is noisy, whereas the combined processing
produces results of much higher fidelity.

ABSTRACT
We present a unique data set for training and evaluation on real-
world point clouds. More specifically for post-processing of multi-
view stereo results, e.g. denoising and consolidation[2].

CCS CONCEPTS
• Computing methodologies → Reconstruction; Matching;
Scene understanding; Shape representations; Shape inference; Super-
vised learning by regression; Neural networks; 3D imaging; Shape
analysis.

1 INTRODUCTION
There has always been a synergy between algorithmic advances
and new data modalities. But with deep learning data has become
not only an inspiration but a necessity.

While deep learning on image processing tasks has been hugely
successful, extending these techniques to the three-dimensional
domain is still an active and open research topic. Much of the chal-
lenges stem from the very different data representations needed
in 3D processing. While the single modality for images commonly
used samples on a regular grid, this does not scale well to three
dimensions - it is simply not feasible to use a voxel grid for to-
day’s high-resolution scans, and this situation will only continue to
worsen in the future. Using point clouds, where each data point is
stored with its Euclidean coordinates, is therefore a more efficient
alternative widely used in practice.

But this very different representation requires new methods to
be developed to foster a comparable surge in development as we
have seen on image data. Not only the methods have to be adapted
and developed, but it also requires an adequate amount of data in
order to become successful. Currently, much of the research done

in deep learning on point clouds uses synthetic data. Often they
are point samples from a surface model or CAD models. While this
allows generating arbitrary amounts of training data by simply
re-sampling the surface, the applicability and transferability to
real-world data is not guaranteed.

We address this shortcoming by approximating ground truth
for real-world data. Of course, it is virtually impossible to attain
the actual accurate positions for scenes of reasonable complexity.
This is because any measurement and algorithm introduces noise
and outliers. To this end, we propose a combination of recording
modalities, i.e. multi-view stereo algorithms (MVS) and structured
light (STL) scanner. While MVS does not require special hardware
and produces densely sampled point clouds, STL needs a calibrated
projector in conjunctionwith one ormore cameras.Methods trained
on this data would allow achieving the quality of STL scans with
the acquisition simplicity of MVS methods. This would also befit
downstream task like surface reconstruction as they are usually
sensitive to noise in the input.

2 RELATEDWORK
2.1 Base Dataset
We leverage a previously published [1, 12] and openly available1
data set. The data consist of 124 different scenes, seen from 49 or 64
calibrated camera positions. Images from each position are taken
under seven different lighting conditions, some of them are depicted
in Figure 2. Results of three different MVS algorithms [5, 9, 17] in
conjunction with structured light scans for each camera position
are provided in the data set.

1Available here: http://roboimagedata.compute.dtu.dk/

http://roboimagedata.compute.dtu.dk/


Figure 2: Photos of 40 of the 124 scenes in our data set.

2.2 Recent Deep Learning Publications
A short list of recent deep learning methods on point clouds, in con-
junction with their application and used data set is given in Table 1.
It is by no means a comprehensive list, but rather exemplifies the
current landscape in this field. A much wider range of publications
on classification, and semantic segmentation exists. This might be
the result of the availability of huge data set like the ones listed
below, which all target classification an/or segmentation tasks:

• Shapenet [7]: Triangular meshes of 220,000 CAD models
classified into 3,135 categories for classification.

• ModelNet40 [20]: Triangular meshes of CAD models of 40
categories (mostly man-made, e.g. furniture), 9,843 shapes
for training and 2,468 for testing of classification and shape
retrieval.

• SHREC15 [14]: Triangular meshes of 1200 shapes from 50
categories. Each category contains 24 models, such as horses,
cats, etc. in various poses. The original purpose is classifica-
tion into the 50 categories.

• ScanNet [8]: 1513 scanned and reconstructed indoor scenes.
1201 scenes for training, 312 scenes for test. The data set
was designed for 3D scene understanding tasks, such as 3D
object classification, semantic labeling, and shape retrieval.

• Matterport [6]: RGB-D data set containing 10,800 panoramic
views with surface reconstructions and camera poses. The
task is also semantic segmentation.

As these data sets are not applicable to tasks like normal esti-
mation from noisy point clouds, it is common to generate training
data by sampling the surface and adding Gaussian noise to the
samples, e.g. [4], [10], or [11]. Although this allows for practically
infinite data it also reduces the capturing process to a very idealized
noise-model. Much of the characteristics of real-world data is not
faithfully captured in this, e.g. viewing direction depended effects,
and systematic or correlated noise like they are obvious in [9], see
Figure 3 third column. In [19] a scanning process is emulated, but
still only in a very simplified fashion of rendering depth images of
the models and recombining these into a point clouds.

3 CONTRIBUTION
We extend the base data set [1, 12] to make it readily usable for
training of deep learning algorithms. While the original data set
comes already with a method for evaluation, this error measure
is not well suited for training as it does not give a one-to-one
correspondence of the MVS points to the STL reference, and also
exhibits some noise in the STL reference. We therefore estimate
a reference by consolidating the MVS points via robust implicit
moving least squares [13] (RIMLS) based on the STL reference, i.e.

the implicit surface is defined by the STL points and the MVS points
are relocated onto this surface. This not only results in a drastic
reduction in noise, as can be seen in Figure 3, but also gives a good
estimate of the normals as the displacement induced by RIMLS
approximates mean curvature motion, which is perpendicular to
the local tangent plane. With this processing we are able to facilitate
the advantages of STL scans and transfere them to the MVS points.

4 EXAMPLE TRAINING RESULTS
As an example use case, we trained the PCPNet [10] implementa-
tion2 published by the authors on our data set. The error function
is defined by

E =
1
N

N∑
i=1

(1 − | cos(ni , n̂i )|)2 , (1)

where n is the target normal vector and n̂ the prediction. It penal-
izes the angle between the ground truth normal vectors and the
prediction without considering orientation. In Figure 4 the loss for
training and test split is plotted. It reaches a value of approximately
0.2 on the test data, which corresponds to a average difference of
16 degrees.

5 CONCLUSION AND FUTUREWORK
We make use of the unique and rich data set provided in [1, 12] and
extend its usability further to the realms of deep learning. None of
the published data sets discussed above was designed for normal
estimation or consolidation of point clouds. We hope to close this
gap and enable another application of deep learning.

We will release the addition to the data set on our website (http:
//roboimagedata.compute.dtu.dk/), as well as the source code to
align MVS results with the STL reference. This will then allow
facilitating other MVS methods, beyond the three already provided,
and will help to further diversify the data set.

Besides that, there are two major topics to address in the fu-
ture. One is working on the fidelity of our ground truth estimate.
The other is evaluating more published work on this data set and
assessing its benefit.

Our next step towards a more faithful data set will be formulating
the consolidation process in a Bayesian framework. This will allow
us to not only have a point estimate of each 3D position, but also
assess the uncertainty of this estimate. Furthermore with a Bayesian
approach we obtain a fitted, generative model. This will allow us to
draw new samples from the estimated distribution, which in turn
can be used to augment the data set and increase the robustness of
the algorithms trained on our data.

A broader evaluation of algorithms is foremost a computationally
bounded endeavor, as for example the training of PCPNet on our
data took almost 10 days. But as this data set will become more
widely known new publications might include an evaluation on it
right away.
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Table 1: Recent deep learning approaches on point clouds and the data sets used. No entry in test data means the same data
set as for training was used and split into training & test data.

Algorithm Application Training data Test data
PointNet [15] Classification & Segmentation Shapenet [7]
PointNet++ [16] Classification & Segmentation Shapenet [7]
PCPNet [10] Normal & Curvature estimation 8 standard meshes, e.g. Armadillo 16 similar meshes
EC-Net [19] Consolidation 24 CAD models and 12 everyday objects Shapenet [7]
NormalNet [4] Normal estimation Simple synthetic shapes like cubes Stanford Dragon
MC-Net [11] Classification, Segmentation, Normal estim. ModelNet40 [20] (for normals)
PCNN [3] Classification, Segmentation, Normal estim. ModelNet40 [20] (for normals)
DGCNN [18] Classification, Segmentation, Normal estim. ModelNet40 [20] (for normals)

Figure 3: Structured light scan (blue) and same scan with recorded color below, Multi-view stereo results (red) from left to
right: Campbell et al. [5], Furukawa and Ponce [9], Tola et al. [17], below estimated ground truth corresponding to the stereo
results above.
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Figure 4: Progress of the loss (see eq. (1)) on training (orange)
and test (blue) data for PCPNet [10].
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