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ABSTRACT

In safety-critical applications, we wish to have a measure of uncertainty
quantification—a measure of confidence calibration that reflects the underlying
uncertainty. For neural network based classifiers, the output probabilities on the
target classes are used typically as a way of uncertainty quantification. However, it
has been observed that the standard training of neural networks, in particular when
trained for the best accuracy, may produce uncalibrated probabilities—probability
estimates that are not representative of the true likelihood. Building on our pre-
vious work on the matrix multilayer perceptron (Taghia et al., 2019), here, we
propose a measure for uncertainty quantification that appears to be more reliable
(calibrated) in comparison to the standard output probabilities from the network.

1 PROBLEM FORMULATION

Consider a classification problem of m > 1 categories and let M = {1, . . . ,m}. We are given a
training dataset consists of the inputs and the corresponding labels,

Dtrain = {x, y}, x = {xi ∈ Rp}ni=1, y = {yi ∈M}ni=1. (1)

Given enough data samples and a viable choice of loss function, the network learns to predict the
label for an unseen test data sample x∗ ∈ Dtest. From a probabilistic classifier, it is expected to not
only correctly identify the labels but also assign reliable probabilities to them. For a well calibrated
classifier, these probabilities can then be directly interpreted as a measure of confidence level. Refer
to Guo et al. (2017) for discussion on the calibration of the neural networks and to Vaicenavićius
et al. (2019) for general discussion on evaluation of the model calibration in classification.

It has been observed that the standard training of neural networks, for example using MLP, gives
biased probabilities. This is particular true when the network is trained for the best accuracy (Guo
et al., 2017). Here, we propose an approach for deriving a set of “modified probabilities” that show
better calibration characteristics than the standard output probabilities from the network.

2 METHOD

This section summarizes the steps for derivation of our new measure of uncertainty quantification.

2.1 CONSTRUCTING TRAINING SET

Recall our problem scenario in Section 1. We now instead assume that associated to a given input xi,
there are two corresponding labels yi and Yi, where Yi is a square matrix in the space of symmetric
positive definite (SPD) matrices of trace one, shown as P1. Our new training set is constructed as

Dtrain = {x, (y,Y)}, Y = {Yi ∈ Pd×d1 }ni=1, (2)

where x and y are defined as in (1).

In typical classification problems, we do not have access to Y. However, they can be constructed
from the inputs x and labels y. Let x̃ = {x̃i ∈ Rd}ni=1 be a set of features extracted from the input
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set x such that x̃i is a feature vector associated to the input xi. Note that, in the simplest scenario,
we can simply set x̃i to be identical to xi. However, in general, x̃i can be a sub-vector of xi ∈ Rp
in particular when the input dimensionality p is large. An an example, one can apply principal
component analysis to the inputs x and use the resulting principal components to form x̃.

Let x̃(j) indicate the set of features associated with the category j ∈M. The trace-one normalized
sample covariance matrix of the jth category is computed using:

Σ
(j)
1 =

Σ(j)

tr(Σ(j))
, Σ(j) =

1

n(j) − 1

∑
i:yi=j

(x̃i − ¯̃x)(x̃i − ¯̃x)>, ¯̃x =
1

n(j)

∑
i:yi=j

x̃i, (3)

where n(j) is the number of instances in the category j. Let Σ = {Σ(i)}mi=1, then our training set is
constructed as

Dtrain = {x, (y,Y)}, Y = {Yi ∈ Σ}ni=1. (4)

In construction of Y, we used the sample covariance of the input features x̃. However, notice that,
the framework is general and it only requires Yi to be a SPD matrix of trace one.

2.2 CLASSIFICATION USING MATRIX MULTILAYER PERCEPTRON

Given our training set Dtrain = {x, (y,Y)} as constructed in (4), we use the general form of the
mMLP neural network (Taghia et al., 2019, Section 4.2, Eq. 7) for the classification purpose using
the following loss function:

`(Ŷ, ŷ,Y, y) = (1− β)`1 + β`2, (5)

where `1 = ∆sQRE(Ŷ,Y) is the symmetrized quantum relative entropy between the true SPD labels
Y and its predictions Ŷ as defined in (Taghia et al., 2019, Eq. 6), and `2 = ∆CE(ŷ, y) is the cross-
entropy loss between the true labels y and its predictions ŷ. The free parameter β would determine
the importance of each loss, and can be treated as a hyperparameter, β ∈ (0, 1). In this work, we set
β = 0.5.

2.3 NEW MEASURE FOR UNCERTAINTY QUANTIFICATION

Let mMLPθ : x∗ → (ŷ∗, Ŷ∗) indicate the trained mMLP network where θ is a set which contains
the neural network parameters. The trained network takes as input x∗ ∈ Dtest and outputs ŷ∗ which
is computed from the output probability vector p(x∗ |Dtrain, θ), and Ŷ∗ which is a SPD matrix of
trace one. We then define our measure of the uncertainty quantification as q = (q1, . . . , qm) where∑m
i=1 qi = 1 and 0 ≤ qi ≤ 1 computed using:

qi =
1−∆sQRE(Ŷ∗,Σ

(i)
1 )∑m

l=1 1−∆sQRE(Ŷ∗,Σ
(l)
1 )

, ∀i = {1, . . . ,m}, (6)

where Σ
(i)
1 ∈ Σ1 given by (3).

We interpret q as our “modified probability”, and hypothesize that it is better calibrated in compari-
son to the standard probability p.

3 EXPERIMENTAL RESULTS

Dataset. We consider the classification task of medical reports. The reports are written in text files
as the summary of the medical examinations1, containing two types of diseases: Lung emboli and
Aorta dissektion. Each disease has its own examination procedure which means the report contents
from the examinations can vary largely. Refer to (Nelsson, 2018, Chapter 4) for additional details
on the data.

We consider a binary classification problem where the target categories are:
1The dataset comes from the Vinnova project: ALFA—Autonomous Large-scale Findings Analysis (con-

tract number: 2017-01545).
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Table 1: Performance evaluation of the various classifiers. For the mMLP model, the calibration
quality measures are computed both using the standard probabilities and the modified probabilities.
For Brier score, ECE, and MCE, the lower values are preferred.

Small Training Set
Classifier Description Accuracy (%) Brier score ECE MCE
Logistic output proba. 89.2 0.052 0.14 0.28
MLP output proba. 94.8 0.065 0.20 0.60
mMLP output proba. 95.1 0.054 0.14 0.35
mMLP modified proba. (6) 95.1 0.041 0.12 0.29

Large Training Set
Classifier Description Accuracy(%) Brier score ECE MCE
Logistic output proba. 91.0 0.043 0.18 0.33
MLP output proba. 96.2 0.063 0.22 0. 55
mMLP output proba. 96.1 0.046 0.20 0. 42
mMLP modified proba., (6) 96.1 0.031 0.17 0.39

• Ingen: the disease was not found in the examination.
• Funnen: the disease was found in the examination.

The two class categories are different in sizes: the class category ‘Ingen’ accounts for about 83%
(16890 samples) of the total samples and the class category ‘Funnen’ accounts for 17% (3512 sam-
ples). The dataset is divided into a training set and a test set. We consider two scenarios of large
training set (80%) and small training set (20%). In both cases, 20% of the samples in the training
set are used for the validation set.

Classifiers. Three different classifiers are compared against each other:

• the logistic classifier as an example of a well-calibrated classifier;
• the standard MLP with 3 hidden layers and 100 units per layer;
• the mMLP with 3 hidden layers and 100 units per layer and 30 units at the SPD layers.

Both MLP and mMLP use the ReLU activation function in their hidden layers. The mMLP uses the
Mercer Sigmoid activation matrix function at the hidden layers. Classifiers are trained for the best
accuracy score on the validation set.

Feature selection and dataset construction. To construct x, we first need to turn the text con-
tents into numerical feature vectors. For this purpose, we extract “Term Frequency times Inverse
Document Frequency”, commonly known as tf-idf2. The number of features is set to 1000. The set
y includes the labels. For construction of Y, we carried out the following steps:

• Applied principal component analysis to the inputs x and used the resulting 20 first princi-
pal components to form x̃.

• For the construction of Y, we used the sample covariance of the input features x̃ computed
according to Section (3).

The training datasetDtrain for the mMLP model is constructed according to (4) while for the logistic
classifier and the MLP, it is constructed according to (1).

Results. The objective of the experiment is not focused on the identification of the best classifier
but rather on the evaluation of the calibration quality of the output probabilities by each model. That
being said, in terms of the accuracy, both models, the MLP and the mMLP, performed equally well
with no clear advantage (Table 1).

The calibration quality is measured in terms of the following measures:
2We used “TfidfTransformer” method provided by “sklearn” package (https://scikit-learn.org/).
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• Brier score. The metric is a combination of calibration loss, defined as the mean squared
deviation from empirical probabilities derived from the slope of ROC segments, and refine-
ment loss, the expected optimal loss as measured by the area under the optimal cost curve
(Brier, 1950).
• The expected calibration error (ECE) and the maximum calibration error (MCE). In com-

puting these measures, the predictions are sorted and partitioned into k fixed number of
bins (k = 10 in our experiments). The predicted value of each test instance falls into one
of the bins. The ECE calculates the expected calibration error over the bins, and MCE
calculates the maximum calibration error among the bins reflecting the worst case scenario
(Naeini et al., 2015).

In computation of the calibration quality measures, for the MLP and logistic classifier, we use the
standard output probabilities, while for the mMLP model, we use both the standard probabilities and
the modified probabilities computed according to (6). The results are summarized in Table 1.

4 DISCUSSION

We proposed a new measure for the purpose of uncertainty quantification in neural networks. Our
preliminarily results seem encouraging. In our analysis on real data, we observed that the newly
introduced measure has potentially better calibration characteristics than the standard probabilities
from the network, when the network is trained for the goal of achieving the best accuracy. Additional
analysis is needed to support the generality of this observation along with research on the theoretical
justifications and guarantees.
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