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ABSTRACT
Building footprint detection and three-dimensional (3D) re-
construction from aerial imagery is of interest in many urban
applications e.g. city planning, state cadastral inspection, en-
vironmental simulations, and radio transmission simulations.
In applications where large land areas need to be covered
regularly to update data it is not practical to use laser scan-
ning or acquire aerial images with high resolution and large
image overlaps. In these applications the reconstructed pho-
togrammetric point cloud may have low resolution with less
building details. We present two deep learning approaches
that support the applications mentioned above. One exam-
ple where semantic segmentation is applied to detect build-
ing footprints and another example of roof type classification
using a deep convolutional neural network pre-trained using
RGB data. Results are shown for a low resolution dense pho-
togrammetric point cloud generated using multi-view stereo
reconstruction of standard overlapping aerial images from na-
tionwide data collection in Sweden.

1. INTRODUCTION

Today, multi-view stereo reconstruction of 3D geometry
from two-dimensional (2D) images is well studied and used
in large scale applications. Dense photogrammetric point
clouds of large areas can be generated from highly overlap-
ping aerial images and are common in city modeling, see
e.g. [1]. These point clouds contain both height information
and spectral information which makes them attractive for re-
constructing buildings in 3D as they can be texture mapped
using the spectral information. Approaches based on im-
agery from e.g. aerial images with small ground sampling
distance or laser scanning, provide point clouds with high
resolution and many resolved building details. However, in
some applications it is not practical to acquire images with
large image overlaps and small ground sampling distance or
use laser scanning. One such example is when large areas
needs to be covered regularly to keep the point cloud up to
date, e.g. when generating a 3D map for an entire country
on a regular basis. In this application the point cloud can be
generated using aerial images with smaller image overlaps
and imaged at larger distances. This gives a photogrammetric
point cloud with low resolution, which is more challenging to

use for building detection and reconstruction than high res-
olution photogrammetric point clouds or a point cloud from
laser scanning.

In this paper we present two deep learning approaches for
urban applications. One method using semantic segmentation
for building footprint detection (Section 2) and a method for
automatic classification of the most common model building
shapes, ridge roofs and flat roofs, using deep convolutional
neural networks (CNN) (Section 3). We show results using
a relatively low resolution photogrammetric point cloud, a
digital surface model, generated using multi-view stereo re-
construction from high altitude aerial imagery with relatively
small image overlap. The aerial images are overlapping in
both the flight direction with 60% and in cross direction with
25%. A dense photogrammetric point cloud is generated from
the images using multi-view stereo with Semi-Global Match-
ing and fusion of depth where redundant depth estimates from
overlapping stereo models are merged [2]. Due to the image
overlap the number of available images for an area varies from
two to six. Stereo models are calculated from each image pair
and depths are fused. The resulting 2.5D point cloud, which is
called Digital Surface Model from Aerial Photos1, is sampled
on a regular grid of 0.5× 0.5 m. Each point that is matched
contains both spectral and height information.

2. BUILDING FOOTPRINT DETECTION

Semantic segmentation is the task of assigning class member-
ship to each pixel in an image, where class may refer to object
or material category. It is often useful to estimate the proba-
bility of each class of interest. The task can be performed
by a fully convolutional neural network [3, 4, 5]. Networks
for semantic segmentation generally have an hourglass-like
shape consisting of two stages. First a feature extractor (or
encoder) creates a set of representations of the image in the
form of a sequence of network layers, where the spatial reso-
lution is gradually reduced using average or max-pooling and
subsampling, while simultaneously the number of channels in
each layer is increased. The encoder is followed by a decoder
network that gradually increases the spatial resolution and re-
duces the number of channels per layer. The up-sampling can

1In Swedish: ”Ytmodell från flygbilder”, see: www.lantmateriet.se



be achieved using standard (nearest neighbour or bilinear) in-
terpolation, or by transposed convolution, where the network
learns interpolation kernels from data. The number of chan-
nels in the output layer equals the number of classes. The
class probabilities are usually modelled by a softmax func-
tion, and the network is trained to minimise the cross-entropy
loss. Designs as those cited above mainly differ in how layers
of equal spatial resolution in the encoder and decoder stages
are connected (sometimes referred to as skip connections). In
the present study the refinement module of Pinheiro et al. [6]
was used for combining encoder and decoder layers. While
FCN [3] and SegNet [5] are more simple designs, the princi-
pal differences compared to U-Net [4] are that the latter com-
bines encoder and decoder layer outputs using concatenation,
and uses transposed convolution for up-sampling, whereas
Pinheiro et al. use bilinear interpolation and a more com-
putationally efficient addition of encoder and decoder layers
preceded by dimension reduction of the encoder layer.

In view of the relatively small number of training exam-
ples available, and the fact that the network was trained from
scratch, the encoder network was designed with a small num-
ber of layers in comparison with many popular deep convo-
lutional networks. The network design is shown in Fig. 1.
The network was trained on imagery covering approximately
100 square kilometres of the city of Linköping and surround-
ing countryside containing 19,700 annotated buildings. The
annotations are based on the polygons from the building foot-
print. The data was divided into 1,600 512× 512-pixel im-
ages at 0.5 m resolution. The dataset was augmented by a
factor of eight using horizontal mirroring and rotation by mul-
tiples of 90 degrees. Adam [7] was used for minimising the
cross-entropy loss. The network was implemented in Tensor-
Flow and trained on a workstation with four NVIDIA Geforce
GTX 1080Ti graphics cards. The performance of the resulting
network was evaluated on 1,600 images covering 100 square
kilometres of the city of Norrköping and surrounding coun-
tryside. This data contained approximately 20,500 annotated
buildings. The network outputs class probability estimates
for each pixel, so a precision-recall curve can be produced,
see Fig. 2. It is seen that a precision of 0.89 is obtained for
a recall of 89% of all true building pixels. Most of the mis-
classifications occur at the building perimeters, but it should
be noted that many small buildings are fully or partially oc-
cluded by tree crowns, and therefore cannot be detected from
above. See Fig. 3 for a qualitative example of the network
input, ground truth, and prediction.

3. ROOF TYPE CLASSIFICATION

In our framework for roof type classification we classify
patches of buildings into the two most common roof types,
ridge roofs and flat roofs. Ridge roofs include different types
of ridge roofs such as gable, half-hip, hip, and mansard roofs.
As only limited annotated data for building classification is
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Fig. 1. Convolutional neural network design for building de-
tection based on semantic segmentation. Horizontal arrows
indicate 3× 3 convolution followed by ReLU (rectified lin-
ear unit) and batch normalization, except to the output layer
where a linear 1× 1 projection is used. Dashed lines indicate
2× 2 max-pooling for sub-sampling, and bilinear interpola-
tion for up-sampling. R refers to refinement module, see [6].
The number of channels in each layer is shown at the top.
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Fig. 2. Precision-recall curve for pixel classification of vali-
dation data.

available the building roof type classification is performed
using transfer learning of a pre-trained CNN on RGB data.

The network architecture is illustrated in Fig. 4. It
is a CNN where the input is a three band image of size
32× 32× 3. The input size is well suited to the problem of
building classification since many of the buildings fit well into
this size without much interpolation. The network consists
of three iterations of convolutional layers followed by ReLU
and max poolings and two fully connected layers, where the
first is followed by ReLU, and in the end a softmax layer
followed by a classifier. The classifier outputs two classes,
one for each roof type. The image input use zero-center
normalization of the data. We initialize the network using
weights from a pre-trained network for object classification
using CIFAR10 data [8] which is common RGB data. In our
data the three spectral channels contain near infrared (NIR),
red, and green additional to the height information from the
point cloud. Combinations of these four input channels in the
training are evaluated in our experiments.

We base the preprocessing of the data on the 2D poly-
gon associated with each building. A patch for each building



Fig. 3. Building footprint detection example. Top left: Near
infrared (NIR), red, and green channels visualised as RGB.
Top right: Height information. Bottom left: Ground truth an-
notations. Bottom right: Prediction in red. Note that several
buildings are occluded by trees and therefore not visible from
above.

is cropped from the point cloud using the building polygon
and the background is set to zero. The 2D building polygon
outlines the projection of the building on the ground. The
building patches are also rotated to align the main axis with
the image coordinates using the lengths of the segments in
the building polygon. Depending on the building shape the
main axis can be aligned both horizontally or vertically in the
image. After rotation the building patches are resampled to
32× 32× 3 pixels to fit the input layer. Examples of train-
ing patches with the bands NIR, red, and green are shown in
Fig. 5. Before training the patches are also augmented using
rotation and flipping to create more training data using the an-
notated data. This also makes the two main directions equal
and removes any differences in the alignment after rotating
the patches.

The aerial images used in the experiments cover approx-
imately 6.6× 3.7 km on the ground with a ground sampling
distance of about 0.25 m. In addition to the point cloud, 2D
building polygons of the building footprint are used to crop
out the relevant point cloud area for each building or build-
ing part. Also a Digital Terrain Model (the National elevation
model) with resolution 1× 1 m is used to recover the building
height over the local terrain.

The proposed classification method using CNNs has been
evaluated using buildings with manually marked roof types
from two classes, houses with ridge roofs and houses with
flat or very low-slope roofs. The training set contains 1,200
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Fig. 4. Convolutional neural network for building roof type
classification. The input is a three band image of size
32× 32× 3. The network consists of three iterations of con-
volutional layers and two fully connected layers and a soft-
max layer followed by a classifier.

Fig. 5. Examples of training data patches for ridge roofs and
flat roofs using the spectral bands in near infrared, red, and
green as the three input layers.

ridge roofs and 400 flat roofs and the test set contains 403
ridge roofs and 197 flat roofs. Multiple copies of the flat
roof data were added to the training set to remove unwanted
bias towards the ridge roof class. The network was trained
using stochastic gradient descent with momentum using the
two classes. In our experiments we have evaluated different
combinations of the three spectral bands and the height infor-
mation as the three input layers. The best result was obtained
by combining height, red, and green as the three input layers,
but almost the same result was obtained using only the spec-
tral information from the data using NIR, red and green, see
Table 1. For reference the result using only the height infor-
mation in all three bands is also shown. For more information
see [9].

4. DISCUSSION AND CONCLUSION

We have presented methods to support building detection and
3D reconstruction from a low resolution photogrammetric
point cloud generated using multi-view stereo reconstruc-
tion of standard overlapping aerial images from nationwide
data collection. This type of point cloud is very challenging



Table 1. Classification results in terms of accuracy for differ-
ent input configurations. Average over ten trained networks.

Input layers (RGB) Ridge roof Flat roof Total
Height, red, green 97.48% 90.80% 96.65%

NIR, red, green 97.37% 90.80% 96.55%
Height, height, height 96.35% 81.19% 94.45%

compared to point clouds from laser scanning or from high
resolution aerial imagery.

The results are encouraging. We show using annotated
data that building roof types can be identified with 96.65%
accuracy. For the building detection a precision of 0.89 is ob-
tained for a recall of 89% of all true building pixels. With
more training data and a deeper feature extractor it should
be possible to increase the performance substantially. In par-
ticular, a deeper network would be able to incorporate more
high-level contextual information into the analysis, e.g., iden-
tifying a large multistory car park as a building, although it
locally looks exactly like a ground level car park.

There are several other possible uses for the type of data
used here. Instance segmentation (e.g. [10]) is an extension
of semantic segmentation where each individual object is de-
tected and delineated. This enables, e.g., to identify different
building types in an area and determine their size. Change
detection compares an image to one or several previous co-
registered images of the same scene, and determines which
pixels have changed in some predetermined semantic sense.
In this case, one possible approach is to use a network archi-
tecture similar to the encoder-decoder design to predict a code
vector (or embedding [11]) for each pixel, such that the pixel-
wise Euclidian distance between the outputs for a test image
and a reference is a meaningful measure of change. Other
approaches to change detection are described in [12, 13]. Au-
tomatic change detection would be quite useful for the gov-
ernment cadastral agencies who update their maps regularly.
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[9] M. Axelsson, U. Söderman, A. Berg, and T. Lithen,
“Roof type classification using deep convolutional neu-
ral networks on low resolution photogrammetric point
clouds from aerial imagery,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 2018, pp. 1293–1297.

[10] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask
r-cnn,” in 2017 IEEE International Conference on Com-
puter Vision (ICCV), Oct 2017, pp. 2980–2988.

[11] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet:
A unified embedding for face recognition and cluster-
ing,” in 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2015, pp. 815–823.

[12] R. Caye Daudt, B. Le Saux, and A. Boulch, “Fully
convolutional siamese networks for change detection,”
in 2018 25th IEEE International Conference on Image
Processing (ICIP), Oct 2018, pp. 4063–4067.

[13] Ashley Varghese, Jayavardhana Gubbi, Akshaya Ra-
maswamy, and P. Balamuralidhar, “Changenet: A deep
learning architecture for visual change detection,” in
Computer Vision – ECCV 2018 Workshops, Laura Leal-
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